Explicit and Implicit TVD Schemes for Conservation Laws with Caputo Derivatives

نویسندگان

  • Jian-Guo Liu
  • Zheng Ma
  • Zhennan Zhou
چکیده

In this paper, we investigate numerical approximations of the scalar conservation law with the Caputo derivative, which introduces the memory effect. We construct the first order and the second order explicit upwind schemes for such equations, which are shown to be conditionally 1 contracting and TVD. However, the Caputo derivative leads to the modified CFL-type stability condition, ( t) = O( x), where α ∈ (0, 1] is the fractional exponent in the derivative. When α is small, such strong constraint makes the numerical implementation extremely impractical. We have then proposed the implicit upwind scheme to overcome this issue, which is proved to be unconditionally 1 contracting and TVD. Various numerical tests are presented to validate the properties of the methods and provide more numerical evidence in interpreting the memory effect in conservation laws.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new total variation diminishing implicit nonstandard finite difference scheme for conservation laws

In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...

متن کامل

A total variation diminishing high resolution scheme for nonlinear conservation laws

In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

Implicit Total Variation Diminishing (TVD) Schemes for Steady-State Calculations

We examine the application of a new implicit unconditionallystable high-resolution TVD scheme to steady-state calculations. It is a member of a one-parameter family of explicit and implicit second-order accurate schemes developed by Harten for the computation of weak solutions of one-dimensional hyperbolic conservation laws. This scheme is guaranteed not to generate spurious oscillations for a ...

متن کامل

Monotonicity conditions for multirate and partitioned explicit Runge-Kutta schemes

Multirate schemes for conservation laws or convection-dominated problems seem to come in two flavors: schemes that are locally inconsistent, and schemes that lack mass-conservation. In this paper these two defects are discussed for onedimensional conservation laws. Particular attention will be given to monotonicity properties of the multirate schemes, such as maximum principles and the total va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2017